Quantum planes of weight (1, 1, n)1

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization in Quantum Planes

These results stem from a course on ring theory. Quantum planes are rings in two variables x and y such that yx = qxy where q is a nonzero constant. When q = 1 a quantum plane is simply a commutative polynomial ring in two variables. Otherwise a quantum plane is a noncommutative ring. Our main interest is in quadratic forms belonging to a quantum plane. We provide necessary and sufficient condi...

متن کامل

Quantum Orthogonal Planes:

We construct differential calculi on multiparametric quantum orthogonal planes in any dimension N . These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum group ISOq,r(N), and do contain dilatations. If we require bicovariance only under the quantum orthogonal group SOq,r(N), the calculus on the q-plane can be expressed in terms of its coordinates x, ...

متن کامل

m at h . Q A ] 2 M ay 1 99 9 QUANTUM HALF - PLANES VIA DEFORMATION

We demonstrate the main idea of constructing irreducible unitary representations of Lie groups by using Fedosov deformation quan-tization in the concrete case of the group Aff(R) of affine transformations of the real straight line. By an exact computation of the star-product and the operatorˆℓ Z , we show that the resulting representations exhausted all the irreducible representations of this g...

متن کامل

Clique Is Hard to Approximate within n1-o(1)

It was previously known that Max Clique cannot be approximated in polynomial time within n1− , for any constant > 0, unless NP = ZPP. In this paper, we extend the reductions used to prove this result and combine the extended reductions with a recent result of Samorodnitsky and Trevisan to show that unless NP ⊆ ZPTIME(2 n(log logn) 3/2)), clique cannot be approximated within n1−O(1/ √ log .

متن کامل

Testing ±1-Weight Halfspaces

We consider the problem of testing whether a Boolean function f : {−1, 1} → {−1, 1} is a±1-weight halfspace, i.e. a function of the form f(x) = sgn(w1x1+w2x2+· · ·+wnxn) where the weightswi take values in {−1, 1}. We show that the complexity of this problem is markedly different from the problem of testing whether f is a general halfspace with arbitrary weights. While the latter can be done wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.1999.8093